Vol. 6 Issue No. 3, July-September 2024
 e-ISSN 2456-7701

 I
 I
 I
 I

Journal of Science and Technological Researches A Peer Reviewed Journal

Domain: www.jstr.org.in, Email: editor@jstr.org.in

GENERALIZED CONTRACTING MAPPING ON M_b-METRIC SPACES WITH APPLICATION

Neeraj Malviya¹ Jerolina Fernandez^{2*} and Sheela³

¹Department of Mathematics, Govt. Degree College Timarni, Harda, M.P., India

^{2,3}Department of Science, The Bhopal School of Social Sciences, Bhopal, M.P., India *Email: jerolinafernandez@gmail.com*

	Date of Received	17 August, 2024
B	Date of Revised	28 August, 2024
Ð	Date of Acceptance	22 September, 2024
\odot	Date of Publication	31 September, 2024
	DOI Link : https://doi.org/	/10.51514/JSTR.6.3.2024.15-19

"together we can and we will make a difference"

P-104, Premier Tower, Premier Orchard Colony, Near Peoples Mall, Bhanpur Road, Bhopal (M.P.), India- 462037 Domain: www.jstr.org.in, Email: editor@jstr.org.in, Contact: 09713990647 © JSTR All rights reserved

GENERALIZED CONTRACTING MAPPING ON Mb-METRIC SPACES WITH APPLICATION

Neeraj Malviya¹ Jerolina Fernandez^{2*} and Sheela³

¹Department of Mathematics, Govt. Degree College Timarni, Harda, M.P., India

^{2,3}Department of Science, The Bhopal School of Social Sciences, Bhopal, M.P., India

Email: jerolinafernandez@gmail.com

ABSTRACT

In the present paper, we establish some fixed point theorems in the framework of M_b -metric space. As illustrations few examples are presented. Finally, as application, we discuss the existence of non-linear integral equation solution. **Mathematics Subject Classification (2000):** 47H10.

Keywords: Mapping, theorem, non-linear, equation, generalized contraction mapping etc.

INTRODUCTION

As a generalization of metric space, in 1989, Bakhtin [2] (and Czerwik [3], 1993) derived a number of theorems of fixed points in the form of partial metric spaces. In 1994, Matthews [13] introduced the concept of partial metric space. This extension of metric states that the distance between a point and itself is not zero. The theory of the metric fixed point has been generalised by several researchers in different directions. (see [4-7, 9-12]).

Asadi et al. [1] in 2014 introduced M-metric space, the generalization of partial metric space and produced some fixed-point results on generalized contractions. M_b -metric space was introduced in 2016 (Mlaiki et al., 2016) [14]. This structure is an extension of partial metric space and yields some fixed-point Theorems.

In light of the same spirit, the aim of this paper, is to define generalized contraction map in order to examine the existence of a fixed point for this mapping, in M_b -metric space. In the current literature, our results have extended significantly a number of well documented findings.

2. Preliminaries

Let's start by reviewing the following notation: **Notation 2.1** [1]

 $1.m_{\mu,\sigma} = \min \{m(\mu,\mu), m(\sigma,\sigma)\}$

 $2.M_{\mu,\sigma} = \max\left\{m(\mu,\mu),m(\sigma,\sigma)\right\}$

Definition 2.2. [1] Let φ be a nonempty set. Suppose $m: \varphi^2 \to R^+$ satisfies

$$(m1) \ m(\mu, \ \mu) = m(\sigma, \ \sigma) = m(\mu, \ \sigma)$$
 if and only if $\mu = \sigma$,

 $(m2) \ m_{\mu,\sigma} \le m(\mu, \sigma),$ $(m3) \ m(\mu, \sigma) = m(\sigma, \mu),$ $(m4) \ (m(\mu, \sigma) - m_{\mu,\sigma}) \le (m(\mu, \omega) - m_{\mu,\sigma})$

 $m_{\mu,\omega}$) + ($m(\omega, \sigma) - m\omega,\sigma$) for all $\mu, \sigma, \omega \in \varphi$. Then

 (φ, m) is called an M-metric space.

The concept of M_b -metric space was given by Mlaiki et al. [14], but first we review the following notation.

Notation 2.3. [14]

(1) $m_{b_{\mu,\sigma}} = \min\{m_b(\mu,\mu), m_b(\sigma,\sigma)\}$

(2) $M_{b_{\mu,\sigma}} = max\{m_b(\mu,\mu), m_b(\sigma,\sigma)\}$

Definition 2.4. [14] Let φ be a nonempty set. Suppose $m_b: \varphi^2 \to R^+$ satisfies

 $(m_b 1) m_b(\mu, \mu) = m_b(\sigma, \sigma) = m_b(\mu, \sigma)$ if and only if $\mu = \sigma$,

 $(m_b 2) m_{b_{\mu,\sigma}} \leq m_b (\mu, \sigma),$

 $(m_h 3) m_h (\mu, \sigma) = m_h(\sigma, \mu),$

$$(m_b 4) (m_b(\mu, \sigma) - m_{b_{\mu,\sigma}}) \leq s[(m_b(\mu, \omega) - m_{b_{\mu,\sigma}})] \leq s[(m_b(\mu, \omega) - m_{b_{\mu,\sigma}})]$$

 $m_{b_{\mu,\omega}}) + (m_b(\omega, \sigma) - m_{b_{\omega,\sigma}})] - m_b(\omega, \omega).$

for all $\mu, \sigma, \omega \in \varphi$, where $s \ge 1$, then (φ, m_b) is called an M_b -metric space.

Example 2.5. Let $\varphi = [0, \infty)$ and m_b : $\varphi^2 \rightarrow \mathbb{R}^+$, for all $\mu, \sigma \in \varphi$ we have

$$m_b(\mu, \sigma) = |\mu - \sigma|^2 + \left(\frac{\mu + \sigma}{4}\right)^2.$$

Note that (φ, m_b) is an M_b -metric space with s = 2, but it is not *M*-metric space since the triangle inequality is not satisfied.

Example 2.6. Let $\varphi = [0, \infty)$ and $m_b : \varphi^2 \rightarrow \mathbb{R}^+$, for all $\mu, \sigma \in \varphi$ we have

$$n_b(\mu, \sigma) = |\mu - \sigma|^2 + 3.$$

Note that (φ, m_b) is an M_b -metric space with s = 2, but it is not a cone b-metric space over Banach algebra A since for and $\mu > 0$, we have $m_b(\mu, \mu) \neq 0$.

Example 2.7. Let $\varphi = [0, \infty)$ and $m_b : \varphi^2 \rightarrow \mathbb{R}^+$, for all $\mu, \sigma \in \varphi$ we have

 $m_b(\mu, \sigma) = (max\{\mu, \sigma\})^2.$

Note that (φ, m_b) is an M_b -metric space with s = 2, but it is not *M*-metric space since the triangle inequality is not satisfied.

Example 2.8.[14] Let $\varphi = [0, \infty)$ and l > 1 be constant and $m_b: \varphi^2 \to [0, \infty)$ defined for all $\mu, \sigma \in \varphi$ we have

 $m_b(\mu, \sigma) = max \{\mu, \sigma\}^l + |\mu - \sigma|^l$. Note that (φ, m_b) is an M_b -metric with $s = 2^l$, but it is not M-metric space since the triangle inequality is not satisfied.

3. Topology for M_b -metric space

Definition 3.1. [14] Let (φ, m_b) be an M_b metric space with $s \ge 1$. Then, for all $x \in \varphi$ and $\varepsilon > 0$, the open ball with centre μ and radius ε is defined by

 $B_{m_b}(\mu,\varepsilon) = \{ \sigma \in \varphi : m_b(\mu,\sigma) < m_{b_{\mu,\sigma}} + \varepsilon \}.$

Definition 3.2. Let (φ, m_b) be an M_b -metric space with $s \ge 1$. Each M_b -metric generates a topology τ_{m_b} on φ whose base is the family of open m_b -balls $\{B_{m_b}(\mu, \varepsilon): \mu \in \varphi, \varepsilon > 0\}$, where $B_{m_b}(\mu, \varepsilon) = \{\sigma \in \varphi: m_b(\mu, \sigma) - m_{b_{\mu,\sigma}} < \varepsilon\}.$

Proposition 3.3. An M_b -metric space is a T_0 -space.

Proof: Let (φ, τ_{m_b}) be an M_b -metric space and $\mu, \sigma \in \varphi$ such that $\mu \neq \sigma$. Then from $(m_b 2)$, we have

$$m_{b_{\mu,\sigma}} \leq m_b(\mu,\sigma) \Rightarrow$$

$$\min\{m_b(\mu,\mu),m_b(\sigma,\sigma)\} \le m_b(\mu,\sigma),$$

That is,

 $m_b(\mu,\mu) \le m_b(\mu,\sigma) \text{ or } m_b(\sigma,\sigma) \le m_b(\mu,\sigma).$ Firstly, assume that $m_b(\mu,\mu) = m_b(\sigma,\sigma)$. Then we have

$$m_{b_{\mu,\sigma}} = m_b(\mu,\mu)$$

= $m_b(\sigma,\sigma)$
< $m_b(\mu,\sigma)$.

Yielding $m_b(\mu, \sigma) - m_{b_{\mu,\sigma}} = m_b(\mu, \sigma) - m_{b_{\mu,\sigma}}$

 $m_b(\mu,\mu)>0.$

If we choose $\varepsilon > 0$ such that $m_b(\mu, \sigma) - m_b(\mu, \mu) = \varepsilon$ then $m_b(\mu, \sigma) < m_{b_{\mu,\sigma}} + \varepsilon$, so that

 $\sigma \notin B_{m_b}(\mu, \varepsilon)$. Next, assume that $m_b(\mu, \mu) < m_b(\sigma, \sigma)$. Then

$$m_{b_{\mu,\sigma}} = m_b(\mu, \mu)$$

$$< m_b(\mu, \sigma),$$

$$\Rightarrow m_b(\mu, \sigma) - m_{b_{\mu,\sigma}}$$

$$= m_b(\mu, \sigma)$$

$$- m_b(\mu, \mu) > 0.$$

Again, if we choose $\varepsilon > 0$ such that $m_b(\mu, \sigma) - m_b(\mu, \mu) = \varepsilon$, then $m_b(\mu, \sigma) < m_{b_{\mu,\sigma}} + \varepsilon$, so that $\sigma \notin B_{m_b}(\mu, \varepsilon)$.

Similarly, for $m_b(\mu,\mu) > m_b(\sigma,\sigma)$, one can easily show that $\mu \in B_{m_b}(\mu,\varepsilon)$ and $\sigma \notin B_{m_b}(\mu,\varepsilon)$. Therefore, for any two distinct points $\mu, \sigma \in \varphi$, there is a ball containing one and not containing the other point. Hence (φ, m_b) is a T_0 -space.

We now discuss the definitions of convergence in M_b -metric space.

Definition 3.4.[14-15] Let (φ, m_b) be a M_b -metric space. Then:

1) A sequence $\{\mu_n\}$ in φ converges to a point μ if and only if

$$\lim_{m \to \infty} m_b(\mu_n, \mu_m) - m_{b_{\mu_n, \mu_n}}$$

2) A sequence $\{\mu_n\}$ in φ is said to be M_b -Cauchy sequence if and only if

$$\lim_{\substack{n,m\to\infty}} (m_b(\mu_n,\mu_m) - m_{b_{\mu_n,\mu_m}}) \text{ and}$$
$$\lim_{\substack{t,m\to\infty}} (M_{b_{\mu_n,\mu_m}} - m_{b_{\mu_n,\mu_m}}) \text{ exists and finite.}$$

3) An M_b -metric space is said to be complete if every M_b -Cauchy sequence $\{\mu_n\}$ converges to a point μ such that

$$\lim_{n,m\to\infty} m_b(\mu_n,\mu_m) - m_{b_{\mu_n,\mu_m}} = 0 \text{ and}$$
$$\lim_{n,m\to\infty} M_{b_{\mu_n,\mu_m}} - m_{b_{\mu_n,\mu_m}} = 0.$$

MAIN RESULTS

We now state our main results.

Theorem 4.1: Let (φ, m_b) be a complete M_b metric space with $s \ge 1$ and $\xi: \varphi \to \varphi$ satisfying the condition:

$$(4.1) \qquad m_b(\xi\mu,\xi\sigma) \le \alpha m_b(\mu,\sigma) + \\ \beta m_b(\mu,\xi\mu) + \gamma m_b(\sigma,\xi\sigma)$$

 $\forall \mu, \sigma \in \varphi$, where $\alpha, \beta, \gamma, \rho \ge 0$, with $\alpha + \beta + \gamma < \frac{1}{s}$, then ξ has a unique fixed point u such that $m_{b}(u, u) = 0$.

Proof: Let $\mu_0 \in \varphi$ be arbitrary. Consider the sequence $\{\mu_n\}$ defined by $\mu_n = \xi^n \mu_0$ and $m_{b_n} = m_b(\mu_n, \mu_{n+1})$. Note that if there exists a natural

number *n* such that $m_{b_n} = 0$, then μ_n is a fixed point of ξ . So, assume that $m_{b_n} > 0$, for $n \ge 0$. By (4.1), we have

$$m_{b_n} = m_b(\mu_n, \mu_{n+1}) = m_b(\xi \mu_{n-1}, T\xi)$$

$$\leq \alpha m_b(\mu_{n-1}, \mu_n) +$$

$$\beta m_b(\mu_{n-1}, \xi \mu_{n-1}) + \gamma m_b(\mu_n, \xi \mu_n)$$

$$= \alpha m_b(\mu_{n-1}, \mu_n) + \beta m_b(\mu_{n-1}, \mu_n) +$$

$$\gamma m_b(\mu_n, \mu_{n+1})$$

 $= \alpha m_{b_{n-1}} + \beta m_{b_{n-1}} + \gamma m_{b_n}$ $= (\alpha + \beta) m_{b_{n-1}} + \gamma m_{b_n}$ for any $n \ge 0$, $m_{b_n} \le (\alpha + \beta) m_{b_{n-1}} + \gamma m_{b_n}$, is himplies $m \le \alpha m_{b_n}$ where $\alpha = \frac{\alpha + \beta}{\alpha} \le 1$

which implies $m_{b_n} \leq \rho m_{b_{n-1}}$, where $\rho = \frac{\alpha + \beta}{1 - \gamma} < 1$ as $\alpha + \beta + \gamma < \frac{1}{s}$. By repeating this process, we get $m_{b_n} \leq \rho^n m_{b_{n-1}}$. Thus, $\lim_{n \to \infty} m_{b_n} = 0$. By (4.1), for all n, m > 0, we have

$$m_b(\mu_n, \mu_m) = m_b(\xi^n \mu_0, \xi^m \mu_0)$$

= $m_b(\xi \mu_{n-1}, \xi \mu_{m-1})$
 $\leq \alpha m_b(\mu_{n-1}, \mu_{m-1}) +$
 $\beta m_b(\mu_{n-1}, \xi \mu_{n-1}) + \gamma m_b(\mu_{m-1}, \xi \mu_{m-1})$
= $\alpha m_b(\mu_{n-1}, \mu_{m-1}) +$

 $\beta m_b(\mu_{n-1},\mu_n) + \gamma m_b(\mu_{m-1},\mu_m)$

Thus, from the above inequality, we deduce that

$$m_b(\mu_n, \mu_m) \le \alpha m_b(\mu_{n-1}, \mu_{m-1})$$
 for all $n \ge 0$.

By repeating this process, we get $m_b(\mu_n, \mu_m) \le \alpha^n m_b(\mu_0, \mu_{m-n})$ for all $n \ge 0$. Hence, $m_b(\mu_n, \mu_m) - m_{b_{\mu_n, \mu_m}} \le \alpha^n [sm_b(\mu_0, \mu_1) + sm_b(\mu_1, \mu_{m-n})]$ $\le \alpha^n [sm_b(\mu_0, \mu_1) + sm_b(\mu_1, \mu_{m-n})]$

$$s^{2}m_{b}(\mu_{1},\mu_{2}) + s^{2}m_{b}(\mu_{2},\mu_{m-n})] \leq \alpha^{n}[sm_{b}(\mu_{0},\mu_{1}) + s^{2}m_{b}(\mu_{1},\mu_{2}) + \dots + s^{m-n}m_{b}(\mu_{2m-n-1},\mu_{m-n})] \leq \alpha^{n}sm_{b}(\mu_{0},\mu_{1}) + \alpha^{n}s^{2}m_{b}(\mu_{0},\mu_{1}) + \dots + \alpha^{n}s^{m-n}m_{b}(\mu_{0},\mu_{1}) \leq s\alpha^{n}[1 + s\alpha + (s\alpha)^{2} + \alpha^{n}s^{m-n}m_{b}(\mu_{0},\mu_{1})]$$

 \cdots] $m_b(\mu_0, \mu_1)$

$$=\frac{s\alpha^n}{1-s\alpha}m_b(\mu_0,\mu_1)$$

As $\alpha < \frac{1}{s}$ and s > 0, from the above inequality follows that

$$\lim_{\substack{n,m\to\infty}} m_b(\mu_n,\mu_m) - m_{b\mu_n,\mu_m} = 0.$$

Similarly, one can show
that
$$\lim_{n \to \infty} M_{b\mu_n,\mu_m} - m_{b\mu_n,\mu_m} = 0.$$

Thus, $\{\mu_n\}$ is an M_b -Cauchy sequence in φ .

Since φ is complete there exist $u \in \varphi$ such that $\lim_{n \to \infty} m_b(\mu_n, u) - m_{b_{\mu_n, u}} = 0.$

Next, we prove that *u* is a fixed point of ξ . For any n > 0, we have $\lim_{n \to \infty} m_b(\mu_n, u) - m_{b_{\mu_n,u}} = 0$

$$= \lim_{n \to \infty} m_b(\mu_{n+1}, u) - m_{b_{\mu_{n+1}, u}}$$
$$= \lim_{n \to \infty} m_b(\xi \mu_n, u) - m_{b_{\xi \mu_n, u}}$$
$$= m_b(\xi u, u) - m_{b_{\xi u, u}}$$

which implies that $m_b(\xi u, u) - m_{b\xi u, u} = 0$, hence $m_b(\xi u, u) = m_{b\xi u, u}$, therefore $\xi u = u$. Thus, u is a fixed point of ξ . Now, we show that if u is a fixed point, then $m_b(u, u) = 0$, assume that u is a fixed point of ξ ,

hence
$$m_b(u, u) = m_b(\xi u, \xi u)$$

$$\gamma m_b(u,\xi u)$$

 $+\alpha m_{\rm b}(u,u)$

$$= (\alpha + \beta + \gamma) \quad m_b(u, u)$$

$$= \alpha + \beta + \gamma < \frac{1}{s},$$

$$\Rightarrow m_b(u, u)$$

$$= 0$$

To prove uniqueness, assume that ξ has two fixed points say $u, v \in \varphi$.

Hence
$$m_b(u, v) = m_b(\xi u, \xi v)$$

 $\leq \alpha m_b(u, v) + \beta m_b(u, \xi u) + \gamma m_b(v, \xi v)$

 $\alpha m_b(u,v) + \beta m_b(u,u) +$

 $\leq \alpha m_h(u, u) + \beta m_h(u, \xi u) +$

 $= (\beta + \gamma) m_{b}(u, \xi u)$

 $\gamma m_h(v,v)$

 $\leq \alpha m_b(u, v) \\ < m_b(u, v)$

which implies that $m_b(u, v) = 0$ and thus u = v.

Corollary 4.2 Let (φ, m_b) be a complete M_b metric space with $s \ge 1$ an $\xi: \varphi \to \varphi$ satisfying the condition:

(4.2) $m_b(\xi\mu,\xi\sigma) \le km_b(\mu,\sigma)$

 $\forall \mu, \sigma \in \varphi$, where $k \ge 0$, with $k < \frac{1}{s}$, then ξ has a unique fixed point u such that $m_h(u, u) = 0$.

Example 4.3. Let $\varphi = [0, \infty)$ and $m_b: \varphi \times \varphi \to R$ be defined by $m_b(\mu, \sigma) = |\mu - \sigma|^2 + \left(\frac{\mu + \sigma}{2}\right)^2$. Then (φ, m_b) is a complete M_b -metric space with s = 2. Define $\xi: \varphi \to \varphi$ by $\xi\mu = \frac{\mu}{3}, \forall \mu \in \varphi$.

$$m_{b}(\xi\mu,\xi\sigma) = |\xi\mu - \xi\sigma|^{2} + \left(\frac{\xi\mu + \xi\sigma}{2}\right)^{2}$$
$$= \left|\frac{\mu}{3} - \frac{\sigma}{3}\right|^{2} + \left(\frac{\frac{\mu}{3} + \frac{\sigma}{3}}{2}\right)^{2}$$
$$= \frac{1}{3^{2}}|\mu - \sigma|^{2} + \frac{1}{3^{2}}\left(\frac{\mu + \sigma}{2}\right)^{2}$$
$$= \frac{1}{3^{2}}\left[|\mu - \sigma|^{2} + \left(\frac{\mu + \sigma}{2}\right)^{2}\right]$$
$$= \frac{1}{9}m_{b}(\mu,\sigma).$$

Thus, all the conditions of Corollary 4.2 are satisfied with $k = \frac{1}{2}$. Hence ξ has a fixed point $\mu =$ 0 and $m_b(0, 0) = 0$.

5. Application

In this section, we endeavour to apply Theorem 4.1 to investigate the existence and uniqueness of solution of the Fredholm integral equation.

Consider the following integral equation:

 $\mu(t) = \int_0^{\xi} G((t, s, \mu(t))) ds,$ (5.1)

for $t, s \in [0, \xi]$, where $\xi > 0$ and $G: [0, \xi] \times$ $[0,\xi] \times R \to R$. In this section, we present the existence theorem for (5.1). Let $\varphi = C[0,\xi]$ be the set of continuous real functions defined on $[0, \xi]$. We endow φ with the M_b -metric

$$m_b(\mu(t), \sigma(t)) = \sup_{t \in [0,T]} \left(\frac{\mu(t) + \sigma(t)}{4}\right)^2, \text{ for all}$$
$$\mu, \sigma \in \varphi.$$

with the constant s = 2.

fixed point of f. Now, we prove the following result. work has been done.

REFERENCES

- [1]. Asadi M., Karapınar E and Salimi P., New extension of p-metric spaces with some fixedpoint results on M -metric spaces, Journal of Inequalities and Appl., (2014).
- [2]. Bakhtin I. A., The contraction mapping principle in almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk 30, 26-37, (1989).

Theorem 5.1: Assume that for all $\mu, \sigma \in$ $C[0,\xi]$

(5.2)
$$|G(t,s,\mu(t)) + G(t,s,\sigma(t))| \le \lambda^{\frac{1}{2}} |\mu(t) + \sigma(t)|$$

for all $t, s \in [0, \xi]$ where $0 < \lambda < \frac{1}{s}$. Then the integral equation (5.1) admits a unique solution in $\mu \in \varphi$.

Proof. From (5.2), for all
$$t \in [0, \xi]$$
, we have
 $m_b(\xi\mu(t), \xi\sigma(t)) = \left(\frac{\xi\mu(t) + \xi\sigma(t)}{4}\right)^2$
 $= \left|\int_0^{\xi} \left(\frac{K(t,s,\mu(t)) + K(t,s,\sigma(t))}{4}\right) ds\right|^2$
 $\leq \int_0^{\xi} \left|\left(\frac{K(t,s,\mu(t)) + K(t,s,\sigma(t))}{4}\right)\right|^2 ds$
 $\leq \int_0^{\xi} \left\{\lambda^{\frac{1}{2}} \left|\left(\frac{\mu(t) + \sigma(t)}{4}\right)\right|\right\}^2 ds$
 $\leq \lambda \int_0^{\xi} \left\{\left(\frac{|\mu(t)| + |\sigma(t)|}{4}\right)^2\right\} ds$
 $\leq \lambda m_b(\mu(t), \sigma(t)).$

Thus, condition (5.1) is satisfied. Therefore, all conditions of Theorem 4.1 are satisfied. Hence ξ has a unique fixed point, which means that the Fredholm integral equation (5.3) has a unique solution. This completes the proof.

Open Problems: Prove analogue of Reich contraction, Ciric contraction and Hardy-Rogers contraction in M_b -metric space.

Acknowledgement: The authors are thankful to Then (φ, m_b) is a complete M_b -metric space M.P. Council of Science and Technology, for support under а Major Research Project No. Let $f(\mu(t)) = \int_0^{\xi} G(t, s, \mu(t)) ds$ for all $\mu \in \varphi$ 3839/CST/R&D/Phy. & Engg. And Pharmacy/2023, and for all $t, s \in [0, \xi]$. Then the existence of a entitled "A Study of Existence of some new type of solution to (5.1) is equivalent to the existence of a Metric spaces with applications," under which this

- [3]. Czerwik, S., Contraction mappings in b-metric spaces, Acta Math Inf Univ Ostraviensis 1(1): 5-11, (1993).
- [4]. Fernandez J. and Malviya N., Fixed point results in M-cone metric space over Banach algebra with an application. (In Press, Filomat).
- Fernandez, J.; Malviya, N.; Mitrović, T. D.; [5]. Hussain, A.; Parvaneh, V. Some fixed point results on N_b-cone metric spaces over Banach

algebra., Adv. Diff. Eqn., 2020:529 https://doi.org/10.1186/s13662-020-02991-5, (2020).

- [6]. Fernandez J.; Saxena K.; Malviya N. On cone b₂-metric spaces over Banach algebra, Sao Paulo J. Math. Sci., 11, 221-239, (2017).
- [7]. Fernandez J.; Malviya N.; Djekic-Dolićanin D.; Pučić, D. The p_b-cone metric spaces over Banach algebra with applications, Filomat, 34(3), 983-998, (2020).
- [8]. Fréchet, M. Sur quelques points du calcul fonctionnel, Palermo Rend., 22, 1-74, (1906).
- [9]. Huang L.G, and Thang M., Cone metric spaces and fixed point theorems for contractive mappings, J. Math. Anal. Appl., 332(2), 1468-1476, (2007).
- [10]. Huang H, and Radenović S., Common fixed point theorems of Generalized Lipschitz mappings in cone metric spaces over Banach algebras, Appl. Math. Inf. Sci. 9, No. 6, 2983-2990 (2015).

- [11]. Kadelburg, T., Radenović, S.: A note on various types of cones and fixed point results in cone metric spaces, Asian J. Math. Appl., (2013).
- [12]. Liu, H, Mu, S., Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., 320 (2013).
- [13]. Matthews S.G., Partial metric topology, 8th Summer Conference on General topology and Appl., 183-197, (1994).
- [14]. Mlaiki N, Tarrad A, Souayah N, Mukheimer A, Abdeljawed T, Fixed point theorems in M_b metric spaces, Journal of Math. Anal., Volume 7, Issue 5, Pages 1-9, (2016).
- [15]. Shende S., G. Agrawal, and N. Malviya. "Some Fixed Point Theorem for Asymptotically Regular Maps in N-Fuzzy Metric Space." Journal of Science and Technological Researches 3, no. 3 (2021): 9-13.