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ABSTRACT

In the present paper, we establish some fixed point theorems in the framework of M, -metric space. As illustrations
few examples are presented. Finally, as application, we discuss the existence of non-linear integral equation solution.
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INTRODUCTION

As a generalization of metric space, in 1989, (m2) muoc < m(y, o),
Bakhtin [2] (and Czerwik [3], 1993) derived a
( M (m3) m(u, o) = m(c 1)
number of theorems of fixed points in the form of
. . (m4) (m(u, o) - mue)< (M, w) -
partial metric spaces. In 1994, Matthews [13]
introduced the concept of partial metric space. This Muw) + (M(w, 0) - Mw,e) for all 4,0, w € . Then

extension of metric states that the distance between (¢, m) is called an M-metric space.

a point and itself is not zero. The theory of the The concept of M, -metric space was

metric fixed point has been generalised by several given by Mlaiki et al. [14], but first we review

researchers in different directions. (see [4-7, 9-12]). the following notation.
Asadi et al. [1] in 2014 introduced M-metric Notation 2.3. [14]

space, the generalization of partial metric space (1) m, = min{m, ), m, (o,0)}
H'U ) 2 ’

(2) Mbu'a-: max {mb(ua H)a mb(U, O—)}
Definition 2.4. [14] Let ¢ be a nonempty set.

and produced some fixed-point results on
generalized contractions. M, -metric space was
introduced in 2016 (Mlaiki et al., 2016) [14]. This

. . . . Suppose m,,: @2 — R* satisfies
structure is an extension of partial metric space

(mp1) my, (1, @) = my(o, 0) =myu, o) if
and only if 4 = o,

(mp2) my, , <my, (4, 0),

and yields some fixed-point Theorems.

In light of the same spirit, the aim of this paper,
is to define generalized contraction map in order to
examine the existence of a fixed point for this (mp3) my, (1, 0) = my(a, 1),

mapping, in M, -metric space. In the current
literature, our results have extended significantly a
number of well documented findings.

2. Preliminaries

Let's start by reviewing the following notation:

Notation 2.1 [1]

1.m, , = min {m(u, u), m(o,0)}

2.M, ; = max {m(u, u), m(o,0)}

Definition 2.2. [1] Let ¢ be a nonempty set.
Suppose m: 2 — R satisfies

(ml) m(u, p) = m(o, 0) = m(u,

o) ifand only if 4 = o,

(mp4) (my(u, o) _mbu,g) < s[(mp(u, w) —
mp, )+ (Mp(w, 0) —my, )] —mp(w, w).

for all u,0,w € @, where s > 1, then (¢, my)
is called an M,-metric space.

Example 2.5. Let ¢ = [0, o0) and m,: ¢?2
— R*, for all u, 0 € @ we have

my (e o) = = ol? + (122)"
Note that (¢, m;) is an M,-metric space with
s = 2, but it is not M-metric space since the triangle
inequality is not satisfied.
Example 2.6. Let ¢ = [0, o) and m,: ¢ 2
— R7, for all u, o € ¢ we have
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my(p, 0) = |u — o|* +3.
Note that (¢, my)
with s = 2, but it is not a cone b-metric space

is an Mj-metric space

over Banach algebra A since for and y > 0, we
have my, (1, 1) # 0.
Example 2.7. Let ¢ = [0, o) and m,: ¢ 2

— R*, for all 4, 0 € ¢ we have
my(u, 0) = (max{u,o})?.

Note that (¢, m,) is an Mjy-metric space
with s = 2, but it is not M-metric space since the
triangle inequality is not satisfied.

Example 2.8.[14] Let ¢ = [0, ) and / >
1 be constant and my: ¢ 2 — [0, o) defined
for all x4, 0 € ¢ we have

mp(u, 0) = max {u, 0} + |u — ol
Note that (¢, mp) is an M,-metric with s = 2¢,
but it is not M -metric space since the triangle
inequality is not satisfied.
3. Topology for M,-metric space

Definition 3.1. [14] Let (@, m;) be an M-
metric space with s > 1. Then, for all x € ¢ and
€ > 0, the open ball with centre p and radius ¢ is
defined by

By, (w &) = {0 € p:m;, (n,0) < My, , + e}.

Definition 3.2. Let (¢, m;) be an M, -metric
space with s > 1. Each M, -metric generates a
topology 7,,, on ¢ whose base is the family of
open my, -balls {B,, (u,€): u € ¢, & > 0}, where
Bm,(w, &) = {0 € p:mp,(u,0) —my, < e}.

Proposition 3.3. An M, -metric space is a Tj-
space.

Proof: Let (¢, 7,,,) be an M,-metric space and
4, o € @ such that u#o. Then from (m,2), we have

My, , < mp(,0) =

min{m, (1, w), my (0, 0)} < my (4, 0),
That is,

my, (u, 1) < my(p, 0) or my(0,0) < my(u, 0).
Firstly, assume that m,(u,u) = my(0,0) .
Then we have

My, , = My (W, 1)

= my(o,0)
< my (l’l' 0)'
Yielding my(u,0) — My, , = My (u,0) —
my,(u, 1) > 0.

If we choose &€>0 such that my(u,0)—

my, (u, u) = € then my, (1, ) < my,, +€, so that

(16)

o¢
my,(o,0). Then
My, , = My (U, 1)
<my(u,0),
=>my(,0) —my,

By, (4, €). Next, assume that m,(p,p) <

=my(y, o)
—my (@, 1) > 0.
Again, if we choose € > 0 such that my,(u, o) —
my, (u, 1) = €, then my, (u, o) < My, , + €, so that

o & Bp, (1, €).

Similarly, for m,(u, ) > my(o,0), one can
easily show that u € B, (4, €) and o € By, (i, €).
Therefore, for any two distinct points u, o € ¢, there
is a ball containing one and not containing the other
point. Hence (¢, m;,) is a T-space.

We now discuss the definitions of convergence in
M,-metric space.

Definition 3.4.[14-15] Let (¢, m;) be a
Mp-metric space. Then:

1) A sequence {u,} in ¢ converges to a
point u if and only if

lim m;, (up, ) —m
n,m—oo

2) A sequence {u,} in ¢ is said to be M, -Cauchy

bun.um

sequence if and only if

n,‘lr;lriloo (mb (:u'nl ﬂm) - mbﬂn,ﬂm) and

lim (Mbun im ) exists and finite.

n,m— oo
3) An M, -metric to be
complete if every M, -Cauchy sequence {u, }

mbﬂ-n.ll—m
space is said
converges to a point u such that

A my, (s i) — M, = 0 and

lim M,
n,m—oo HUn, 1

MAIN RESULTS

We now state our main results.

—m =
m bllnvll—m

Theorem 4.1: Let (¢, m;) be a complete M-
metric space with s > 1 and &: ¢ — @ satisfying
the condition:

4.1) my,(§p, §0) < amy,(u,0) +
Bmy, (1, Ep) + ymy (0, o)

VY u 6 € ¢, where a,f, y,p = 0, with a +

B +y< i, then ¢ has a unique fixed point u

such that my, (u,u) = 0.
Proof: Let py € ¢ be arbitrary. Consider the
sequence {un} defined by u, = {"ug and m;, =

myp (W, Upgq). Note that if there exists a natural
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number n such that m;, =0, then , is a fixed
point of ¢. So, assume that m;, > 0, forn = 0. By
(4.1), we have
My, = My (U Bng1) = My (§pn_1,TE)
< amy(Hp-1, Hp) +
By (Hn—1, §ln-1) + ¥mp (Hp, $1y)
= amy(Pn-1, ko) + By (Hp-1, Hp) +
Yy (M Mnt1)
=amy,  + men—1 +ym,,
=(a+p)ymy, +ym,,
for anyn =0, m, < (a+p)m,, , +ymy,

which implies m;, < pm,, _ , where p = % <1

asa+ f +y < % By repeating this process, we
getm, < p"m, . Thus, 711_{1010 my, = 0. By (4.1),
for all n,m > 0, we have
My (M M) = M (§" 1o, §™ o)
=mp (§Hn-1, $Mm-1)
< amb(”n—l' um—l) +
By (Mn-1) §bn—1) + Yy (1, §pm—1)
= amy(Rn-1, Mm-1) +
By (Hn—1, Wn) + ¥y (M-, )
Thus, from the above inequality, we deduce
that
My (Wny H) < @My (Ry—1, Wp—y) foralln >
0.
By repeating this process, we get
mb(unﬁ p-m) =< anmb(um um—n) foralln = 0.
Hence, My (M ) = My, <

a”[smp (Mo, H1) + s (g, Win—n)]
< a™[smy (o, 1y) +
s?my (g, H2) + %My (Ma) Hin—n)]
< a[smy (o, 1y) +
s2my (U, 12) + -+ + ™My (Wam—n—1) Hm—n)]
< asmy(po, uy) +
ams?my (o, ) + -+ + a™s™ " my, (o, 1)
< sa™[1+ sa+ (sa)? +
“++ Jmy (Ko, 11)

an

== my, (Ko, Hq)

1-sa

Asa < %and s > 0, from the above inequality
follows that
n}jlrgw mp (W, W) =My, = 0.
Similarly, one can show
thatn,l,,ifilw Moymm ~ Mbpum =

Thus, {w,} is an M,-Cauchy sequence in ¢.

a7

Since ¢ is complete there exist u € ¢ such that
lim my, (y, w) = my,, ., = 0.
Next, we prove that u is a fixed point of ¢. For
any n > 0, we have lim my,(w,,u) —m, =0
n—oo Hnu

= Tlll_{{)lo My (Wnt1, W) - My i1
= Al_rfo My (§ln, U) - My,
=my(§u,u) - Mpey u
which implies that m,(u,u) - my, L
hence my, (éu, u) = my, fu’ therefore éu = u. Thus,
u is a fixed point of £. Now, we show that if u is a
fixed point, then m, (u,u) = 0, assume that u is a
fixed point of &,
hence my, (u, u) = my(u, &u)
< amy(u,u) + my(u, &u) +
ymy (u, $u)
= ( Bty ) muwiu)

+amy(u,u)

(at+p+y ) muuw
Asa+p+ vy < %
= my(u, u)
=0.
To prove uniqueness, assume that ¢ has two
fixed points say u, v € ¢.
Hence my, (u, v) = my,(éu, év)
< amy(u,v) +
Bmy(u, §u) + ymy, (v, §v)
= amy(u,v) + fmy, (u,u) +
ym, (v, v)
< amy(u,v)
< my(u,v)
which implies that m, (u,v) = 0 and thus u =

Corollary 4.2 Let (¢, mp) be a complete M-
metric space with s > 1 an &: ¢ — ¢ satisfying the
condition:

(4.2) my (§w, $0) < kmy (1, 0)

V o € @, where k > 0, with k < l then &
has a unique fixed point u such that m (u, u) = 0.

Example 4.3. Let ¢ =][0,0) and
mu:@ X @ >R be defined by my(yo)=

2
lu—oal? + (“;—U) . Then (¢, my) is a complete

M, -metric space with s = 2. Define : ¢ — ¢ by
fn=LVueg.
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mb(fu;fo_)
= |¢p—éo|?
+ 2
+(Eu €a>
2
b o2 §+§2
|§_§ 2
1 /u+0\?
— _ 2 _
= gzl +3z(— )
_ A u—i—a)z
32[|” ol +( 2
= M (,0).

Thus, all the conditions of Corollary 4.2 are
satisfied with k = é, Hence ¢ has a fixed point y =
0 and m, (0,0) = 0.

5. Application

In this section, we endeavour to apply Theorem
4.1 to investigate the existence and uniqueness of
solution of the Fredholm integral equation.

Consider the following integral equation:

G @ = [ 6(@ s u))ds,
for t,s € [0,¢&], where § > 0 and G: [0, &] X
[0,é] X R — R. In this section, we present the

= C[0,¢]

be the set of continuous real functions defined

existence theorem for (5.1). Let ¢

on [0, ¢£]. We endow ¢ with the M), -metric
my, (W(E), o () = sup (@)2 for all
te[o,T]
wo € a@.
Then (¢, my) is a complete M, -metric space
with the constant s = 2.

Let f(u(®) = ff G(t,s,n(6))ds for all p€ @

Theorem 5.1: Assume that for all y,o €

C[0,¢]

(5.2) |G (t, s, 1(t) + G(t,s,0())| <
() + o ()]

forallt,s € [0,&] where 0 < A < i Then the
integral equation (5.1) admits a unique solution
iny€E @.

Proof. From (5.2), for all t € [0, £], we have

my, (Eu(t), E0(8)) = (w)

- |f(f (K(t's'u(t)):K(t,s,a(t))) ds|2

N

|(K(t'5'u(t))+’( “'S""t)))r ds
0

4

<)) e
< ”05{(|u(t)|:|a(r>l)2}ds

< Amy (u(t), o ().
Thus, condition (5.1) is satisfied. Therefore, all
conditions of Theorem 4.1 are satisfied. Hence ¢

has a unique fixed point, which means that the
Fredholm integral equation (5.3) has a unique
solution. This completes the proof.

Open Problems: Prove analogue of Reich
contraction, Ciric contraction and Hardy-Rogers

contraction in Mj;-metric space.

Acknowledgement: The authors are thankful to
M.P. Council of Science and Technology, for support
under a  Major  Research  Project  No.
3839/CST/R&D/Phy. & Engg. And Pharmacy/2023,

and for all t,s € [0,&]. Then the existence of a entitled “A Study of Existence of some new type of

solution to (5.1) is equivalent to the existence of a
fixed point of /. Now, we prove the following result.
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