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ABSTRACT

The Coefficient of thermal expansion a for iron is studied at extreme P,T condition and presented in regular
intervals of P and T. The preferred approach constrains o via the thermal pressure equation of state is more
secure than those calculated from thermodynamic simplifications.
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INTRODUCTION

The thermal-chemical state of the Earth's core
requires knowledge of iron rich alloys at Mega bar
pressures and high temperatures. The Earth's core
makes up nearly one third of the planets mass. Its
composition  property and dynamics are
fundamental issues in the study of the Earth's
interior. Deeply buried in the center of the planet,
the core has kept its chemical composition a long-
standing mystery. Cosmo chemical studies of
meteorites and geochemical analysis of samples
from shallower portions of the Earth suggest that
the core is made of iron alloys containing nickel
(Ni) and one or more lighter elements [1]. On the
basis of observing seismic rays penetrating the
deep interior of the Earth and the orbital dynamics
of the Earth as a planet in the solar system, models
have been constructed to describe the physical
state, density profile and velocity profiles of the
Earth's interior. By the knowledge of thermal state
of the core and the equation-of-state (EOS) of
various iron alloys at the pressure and temperature
conditions of the core, the thermal state of the core
can be deduced from the freezing point of core
composition at the pressure of inner-outer core
boundary and the adiabatic temperature gradient of
the core composition under core pressures.
Uncertainties in the core composition directly lead
to uncertainties in the thermal state. By iteration, a
self-consistent model of the thermal-chemical state
of the core may be found.

Thermal expansion is a fundamental aspect of
EOS. Various parameters have been introduced to
characterize thermal expansion under -elevated
pressures. They fall into two general categories,
one focusing on macroscopic thermodynamic
quantities and derivatives, and the other based on
lattice vibration theories and microscopic view of
solids. [2, 3] In the first category, P-V-T data are
grouped into isothermal, isobaric, or isochoric sets.
A Dbasic approach is to calculate the thermal
expansion coefficient from isobaric data according
* Author for correspondence

to its definition. One can also calculate temperature-
dependent bulk modulus by fitting isothermal data to
the  high-temperature  Birch-Murnaghan  EOS.
Isochoric data allow the calculation of thermal
pressure at constant volume, which is related to
thermal expansion coefficient and isothermal bulk
modulus. In the second category, the Mie-Gruneisen-
Debye EOS is widely used to extract a number of
thermoelastic parameters from P-V-T data, including
the isothermal bulk modulus at ambient pressure
(Krp), its pressure  derivative (Krp), the Debye
temperature at ambient pressure and temperature 0y,
the Gruneisen parameter 7y, (which describes the
volume dependence of the Debye temperature), and q
(which is a parameter describing the volume
dependence of the Gruneisen parameter). Jackson and
Rigden [4] carried out a systematic analysis of P-V-T
data of mantle minerals and found excellent
agreements between different methods.

The volume — temperature relationship and
thermal expansivity data are required for investigating
the equation of state and predicting the compression
data of solids at high temperatures [5, 6].

Specific thermodynamic properties :

Let a homogeneous system with pressure P,
volume V, absolute temperature T and entropy S be in
a state of equilibrium. This equilibrium state of the
system can be described by any two of the above
coordinates. The first order partial derivatives of these
coordinates can be wused to define several
experimentally measurable thermodynamic properties.
Following relations are important among them.

i) The coefficient of volume thermal expansion

1(oV
ii) The pressure coefficient
_1(oP
-1,
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iii) The isothermal bulkmodulus

oP
Ky =-V [—j 3)
r v )p
iv) The adiabatic bulkmodulus
-y |9P
Kg=-V [aV] s (4)
v) The constant pressure specific heat
oS
Cp=T [_] (5)
P ar |p
vi) The constant volume specific heat
_ oS
o= r(8)

Some well known direct relations which prove
useful in the analysis are

1)  The ratio of two specific heats and also of the
two bulkmoduli

e _Ks _yur 7
o, Ky ST (7
il) The differences of two specific heats

Cp—Cy= TVoKp (®)

iii) The product of the volume thermal expansion

coefficient and the isothermal
bulkmodulus
oKy = (0P/oT), = pP 9)
iv) The difference of two bulkmoduli
2
Ky - Kp =1L (10)

v) The Gruneisen parameter directly defined by
the Mie-Grueneisen equation

_ JoKr _ VaKs _ -V (o) _Ks(oT (11)
[—en ¢, 1 \ar)g T \apg

Empirical Relationships :

The original Murnaghan's equation was
formulated [7] to predict P-V data for a solid at a
fixed temperature. It did not contain any terms
showing the variation of volume with temperature.
More recently attempts have been made [5, 8, 9,
10] to incorporate the thermal effects so as to
estimate the volumes at simultaneously elevated
temperature and pressure. According to Akaogi and
Navrotsky [8] we can write.

VIVo=1+ag (T-Ty)+ o (T-Tyf (12)

a= (7/7) ™ g +200g (T-Tp)] (13)

Where ¢, is the thermal expansion, V, the volume

and ', the temperature derivative of xat T = T,

and P = 0. It should be mentioned that equations (12)
and (13) are consistent with each other and are based
on the standard definition of ¢ given us.

1 (dVJ
a=—|——

V- \dT )p
Fie and Saxena [9] have used an expression which can
correctly be expressed as follows :

(14)

VIVy =1+ag(T-Ty)+%haly (T-Ty P - 1o (T-Ty) ' (15)

Where IT is a constant having the units of T and
value equal to 1. We have introduced the constant 1
in the last term to make it consistent with the other
terms in equation (15) with respect to units. An
expression of a corresponding to (15) is then obtained
as follows:

a=(/ VO)‘I[aO +0lo (T-Tp)+M oy (T—TO)_Z] (16)
Guillermet and Gustafson [10] considered an

exponential dependence of V/V, on temperature as
given below.

a7

2

0t’o(T—To)z}

r = exp{ao(T—TO) +
Yo

Equations (14) and (17) yield a linear dependence of
o on temperature as follows:

oa=0gy+ o (T—TO)

(18)

Plymate and Stout [5] have presented a more
involved expression for the temperature dependence
of (V/Vy) by taking into account the variation of
thermal bulkmodulus (K) with temperature and
pressure. The expression given Plymate and Stout is

-1/K'0
v dK\(T-T,
_ = 14| — || —=
Vo dr )| K,

28] ] =]

Where dK/dT is the temperature derivative of
isothermal bulkmodulus at constant pressure. K, and
K'y are the values of the bulkmodulus and its first
pressure derivative at atmospheric pressure. The
expression of & corresponding to eq. (19) obtained as

. ﬁ (z_?)_é(j_fyfj{m{j—’;](r—n)}* (20)

. {a;— - (;’,’;)] r-1,)

exp

a=aq,
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In deriving (19) and (20) the bulkmodulus has been
assumed to vary linearly the temperature. This
implies that dK/dT is constant and its value is taken
at room temperature and atmospheric pressure. An
expression for the temperature dependence of o has
been obtained by Anderson et al [11] which can be
expressed as follows:

a=ag [I —aedr (T-T,)] " @1
Where 5 _ _ 1 (ﬁ) (22)
4 ak \ dT ),

Equation (21) has been derived by integrating the
following relationship and taking &p to remain
constant

1 (da
The expression for the temperature dependence of
V/V, corresponding to (21) is been obtained as

(23)

V /¥y =l1-agor (T-1,)[ (24)

Some useful thermodynamic relationships for
predicting the temperature dependence of o and Ky
can be obtained by the use of the definition of the
Anderson-Gruneisen parameter &p with certain
physically plausible approximations. We define ot
in two alternative ways as follows [12, 13].

5 =_L6K_T =_L _aKT _ 1 ‘?K_T (25)
T="aks\Cor ), kKp (ov ) akgor ),

o533, ()
=al\ar), o2|\or ), \or),

Where P, V and T have their usual definitions of
pressure, volume and temperature respectively.
One of the most widely used thermodynamic
approximations [13, 14, 15] is that the product.

oKy =¢§

(26)

27

is assumed to remain constant & for a given solid. If
this assumption holds good, then the integration of

the first part of equation (25) considering to §T to
be independent of temperature yields.

K7 - K9 = —aK787(T-Tp) (28)

Where K% is the value of Ky at T=T,

The volume derivative of equation (27) at constant
temperature, treating & as constant gives

o(L2) <rr (2] o
v )y v )y

So that equations (26) and (29) yield

(29)

Vo (Kr) _V(da) _
KT(f)V]T_a(E)VJT or (30)

The integration of equation (30) gives the following
two relationships

ol
and
S

Where oy and V, are the initial values of o and V.
The relationship (31) and (32) yield the volume
dependence of Kr and ¢ at constant temperature
under the effect of pressure. In order to determine the
variation with temperature we rewrite equation : (25)
in the following form.

5. (BKTJ 7 (OKTJ
r=———|—L| =——| =L
QKT aT P KT oV P
Equation (33) is obtained by substituting for
a:(] / V)(@V/('}T)P. The integration of equation (33) at

constant pressure yields the same relationship as
given by (31). Thus the equation (31) is applicable for
studying the pressure dependence as well as the
temperature dependence of Kr. The volume derivative
of equation (27) at constant pressure, treating £as a
constant gives.

(33)

o (aﬁj +Kyp (@j =0 (34)
o J)p v )p
In view of equations (33) and (34) we can write
8t = vy (ﬁj (35)
a\dV Jp

The integration of equation (35) at constant pressure
yields a relationship similar to that given by equation
(36). From the derivations given above it is clear that
equation (31) wunder the effect of changing
temperature and equation (32) under the effect of
changing pressure are based on only one assumption,
namely that &t remains constant the effect of changing
pressure and temperature. On the other hand, equation
(31) for changing pressure and equation (32) for
changing temperature are valid under an additional
assumption given by equation (27). At constant
pressure treating £ as constant,

(25, {3

so that

(36)
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1 oK 1 (oo
= (5 ), 2 (&) &
T P o P

Equations (25) (26) (30) and (37) together give

(aﬁ] =0 and [%) =0
The integration of equation (37) yields another

useful relationship for studying the temperature
dependence of a.. This is expressed as

(/ag)= [1—agdr (T-T5)[!

The variation of &y with temperature has been
taken into consideration analytically in the model
developed by Tallon [14]. The modified Gruneisen
parameters gyr and gyp defined by Tallon are
expressed as

(38)

olnM
=_V 39
gmr 0( rT )T (39
olnM
=-V 40
EMmp 0( o )P (40)

Where V| is the volume V at atmospheric pressure
and room temperature. M represents any of the
elastic constants or moduli. If we put isothermal
bulk modulus in place of M equations (39) and
(40) then we obtain.

__V [&Kr) _(%Kr
(gKT )_ KT ( o jT [ opP JT (41)
and
__V (&Kr) ___! (&Kr
lexp )= Kr { P jP oK ( oP jT (42)

Thus at VZVO, gkt = 8KT/(1,P and gkp = oT [the
Anderson Gruneisen parameter equation (25)].
Using the definitions (eqations (39) and (40) and
taking the assumption given by equation (27)
Tallon [14] obained the following expression for
the temperature dependence of ¢ and Kr.

(r,P)=o(Tp, P)exp|: gKp {Wﬂ

7 43)

Yo

WH (44)

(r,P)=KT<To,P>exp[—gKP[

One can calculate the values of « and Kp at
different temperature with the help of equations
(43) and (44).

Thermal Expansivity of Iron at Very High
Pressure And Temperature :

The thermal-pressure equation of state can be
written as

PW.T)= Ry (V,300K) + Py (T) 45)
where Py is the cold (300 K) pressure. One uses the
300 K Py, V data for iron tabulated by Anderson et al.
[15]. These data are consistent with the Mao et al.
[16] data in the pressure range 0-300 GPa common to
both data sets. In eq. (45) Py is the thermal pressure,
the pressure in addition to Py resulting from increased
temperature with constant volume.

By a thermodynamic identity, we have

(5, =
or ),

Where Kt is the isothermal bulk modulus. A good
approximation often used in high-temperature
equations of state for nonmetals is that oKy is
independent of temperature. In this approximation,
Pry is proportional to AT= T— T, (T,, the reference
temperature, is often 300 K), with oKy being the
proportionality constant. However, for metals, one
must consider effects due to the thermal excitation of
electrons [17, 18] and include a higher-order term. In
other words, oo K1, not Pry, is a linear function of T
[19, 20, 21]. The integration of eq. (46) gives.

(46)

Py (AT)=a (4T)+ éb (ar)? (47)
or

Py (1)=a (0= 26 (1-1,Y @®)
where a and b represent (oK) and
(aaKT J respectively.

T )y

One is guided by theory [20] for the value of the
anharmonic coefficient, b in eq. (48), using 7.8 x 10—
7 kPa K> The effect of this nonlinear term in the
calculated equation of state is small, but noticeable at
very high temperature. In using equations (45) and
(48) to get the complete equation of state, one has
implicitly assumed that a and b in equation (48) are
not dependent on volume (or pressure). The primary
concern in justifying this assumption is with a since b
already is a much smaller higher order term. The
validity of assuming ¢ is independent of volume is
supported from experiment. The 300K isotherm

values for oK, [22] do not change systematically
with volume; the standard deviation of ak,

determined over the full volume range. Furthermore,
recent theoretical studies suggest that ak is
insensitive to volume over a wide temperature range
[19, 20, 23]. When comparing the work of Wasserman
et al [19] and Stixrude et al [20] with that a Alfe et al.
[21], there is some difference in the computed value
of aK, , especially at low temperatures. Regardless

of the exact numbers for ak, that emerge from
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these theoretical studies, they show K. to be
insensitive to volume (or pressure on an isotherm).
At the highest temperature (6000 K) illustrated,
however, the Alfe et al. [21] report shows some
deviation from this general trend.

Resulting values of a (P,T) along with selected
isobars and isotherms are listed in Table 1 and
illustrated in Figs. 1-4. The results illustrated in Fig. 1
include some smoothing, especially at lower pressure,
of the primary values listed in Table 1.

P(GPa) T(K)

300K 1000K 2000K | 3000K | 4000K | 5000K | 6000K | 7000K
40 3.47 3.85 530
60 2.83 3.00 3.98 478 7.17
30 232 2.51 3.14 3.55 497 6.56
100 1.94 2.10 2.54 2.90 3.72 4.48 6.50
120 1.65 1.79 2.10 242 2.96 3.62 4.65 6.53
140 1.41 1.56 1.77 2.02 2.42 2.92 3.60 4.80
160 1.23 1.38 1.52 1.71 2.04 2.45 2.96 3.90
180 1.09 1.23 1.34 1.49 1.78 2.10 2.52 3.28
200 0.99 1.10 1.21 1.37 1.56 1.86 2.22 2.80
220 0.91 1.00 1.11 1.28 1.42 1.70 1.96 2.48
240 0.84 0.95 1.04 1.20 1.32 1.56 1.80 2.22
260 0.80 0.90 0.98 1.12 1.23 1.47 1.67 2.00
280 0.76 0.85 0.93 1.06 1.17 1.39 1.57 1.84
300 0.74 0.81 0.89 1.00 1.11 1.31 1.48 1.70
330 0.69 0.77 0.86 0.98 1.07 125 1.38 1.52
360 0.68 0.75 0.84 0.96 1.04 1.19 1.30 1.42

Table 1: Values of C U (P,T) @ 10°K™) for iron along selected isotherms and isobars (GPa) determined from the

equation — of state.

SO sera 80 120,

4.0

=

= Shock Hugomot 202 GPa <Dum & Ahrens, 1993]

a 2000 4000 BO(X)
Temparature (K)

Figure 1 : o(T) along selected isobars. The Shock
Hugoniot value was reported at 202 GPa and 5200
K [33]
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Figure 2, 3 and 4 : o(P) for iron determined from our
present equaiton of state method on 2000K, 4000K
and 6000K isotherm respectively, Comparisons are
made with results from simplifying thermodynamic
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assumptions discussed here and with results from
theoretical studies.

THERMAL EXPANSIVITY AND BULK
MODULUS FOR MINERALS:

One of the most widely used thermodynamic
approximations [13, 14, 15, 24] for studying the high
temperature high pressure behaviour of solids is that
the product of volume thermal expansion coefficient,
i.e., the thermal expansivity and the isothermal bulk
modulus Kt remains constant. Thus we can write

oKy =& (49)

where the product has & has been assumed to remain
constant under the wvariation of pressure or
temperature. If this assumption does not hold, then
equation (49) yields the following relationship for
the isobaric variation ak, and & with the change in

volume under the effect of temperature;

Vida) |V (dkr) (&)
o\dV)p Kpr\ dV )p &E\dV)p
The data reported by Anderson et al [25] for

two minerals at high temperatures are used in the

present study to access the wvalidity of basic

assumptions regarding the variations of o, Kt and &
with temperature. In particular, one studies the
variation of o and volume with temperature using

the thermodynamic model due to Xia and Xiao[26].

Taking the high temperature data from
Anderson et al [25] one made an attempt to

plot ok, and & each as function of V/V,, where V,

300K. Values
to different

of V/V()

were

is the volume at

corresponding temperatures
estimated from the data on density [25]. Systematic
linear relationship are obtained only for In K1, versus
In V/V, for Mgo and Mg,SiO, [Figures: 5, 6]. Plots
for In aor In & versus InV/V, are found to be
unsystemaic and non-linear. The validity of this
assumption has been demonstrated by Xia and Xiao
by calculating the thermal expansivity of MgO up to
1800K in good agreement with experimental data.

The minerals under study remain in the solid phase

for the temperature range considered here.

Temperature VIV, o
K) Calculated Experimental | Calculated | Experimental
from present Value Ref. from present Value Ref.
study [32] study [32]
300 1.000 1.000 31.2 31.2
400 1.0033 1.0033 34.9 35.7
500 1.0070 1.0073 37.7 38.4
600 1.0109 1.0112 40.0 40.2
700 1.0150 1.0153 41.8 414
800 1.0194 1.0196 43.4 42.6
900 1.0239 1.0240 44.7 43.8
1000 1.0285 1.0284 459 44.7
1100 1.0333 1.0331 46.9 45.6
1200 1.0382 1.0379 47.8 46.5
1300 1.0432 1.0427 48.6 47.1
1400 1.0484 1.0476 493 48.0
1500 1.0536 1.0528 49.9 48.9
1600 1.0589 1.0581 50.5 49.8
1700 1.0643 1.0635 51.0 50.4
1800 1.0697 1.0688 51.5 51.3

Table 2: Values of V/V,and thermal expansivity a(10°K™") for MgO V=V, at T=300K
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Temperature VIV, o
X) Calculated Experimental Calculated Experimental
from present study Value Ref. from present Value Ref.
[32] study [32]
300 1.000 1.000 27.2 27.2
400 1.0029 1.0028 30.4 30.3
500 1.0061 1.0059 329 32.2
600 1.0095 1.0094 34.8 33.6
700 1.0131 1.0129 36.5 34.8
800 1.0169 1.0164 37.8 359
900 1.0208 1.0199 39.0 37.0
1000 1.0248 1.0238 40.1 38.1
1100 1.0290 1.0277 41.0 39.2
1200 1.0333 1.0320 41.8 40.5
1300 1.0376 1.0363 42.5 41.6
1400 1.0421 1.0407 43.1 42.7
1500 1.0466 1.0451 43.7 439
1600 1.05512 1.0498 44.2 45.0
1700 1.0559 1.0547 44.7 46.2
Table 3: Values of V/Vand thermal expansivity a(10°K™") for Mg,Si04 V=V, at T=300K
y MO Figure -6
RESULT AND CONCLUSION
2 49 One's result indicate that the value for o at 202
Gpa and 5200K should be about 1.8x10°K™" for
“o iron. Results from theory favour a little lower value
at this pressure and temperature, but are also
“ significantly higher than the value of 0.91+0.20x10
K '[27] reported from shock experiments. The good
. . i . agreement between the calculated and experimental
° o oy o values of a and V/V, support the validity of
assumption used for minerals under study.
Figure -5
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